Документ подписан простой электронной подписью Информация о владельце:
ФИО: Колычев Сергей Алексеевич
Должность: ИО Директора колледжа

Приложение к программе

Техническая эксплуатация летательных аппаратов и двигателей

Дата подписания: 01.10.2025 09:20:27
Уникальны КИРСАНОВСКИЙ АВИ АЦИОННЫЙ ТЕХНИЧЕСКИЙ КОЛЛЕДЖ —
993281 ФИНТИГАЛІЗМОСКОВСКОГО ГОСУДАРСТВЕННОГО ТЕХНИЧЕСКОГО
УНИВЕРСИТЕТА ГРАЖДАНСКОЙ АВИАЦИИ

УТВЕРЖДАЮ

И.о. директора Кирсановского АТКфилиала МГТУ ГА

С.А. Колычев

2025 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

ОП.14 ОСНОВЫ ТЕОРИИ АВИАЦИОННЫХ ДВИГАТЕЛЕЙ

Программа учебной дисциплины разработана на основе Федерального государственного образовательного стандарта среднего профессионального образования 25.02.01 по специальности «Техническая эксплуатация летательных аппаратов И двигателей», утвержденного приказом Министерства просвещения Российской Федерации от 18 сентября 2024г. № 648, (зарегистрирован в Министерстве юстиции РФ 23 октября 2024 г., регистрационный № 79870)

Организация-разработчик: Кирсановский авиационный технический колледж — филиал Московского государственного технического университета гражданской авиации.

Разработчик: преподаватель О. А. Светлаков

Редактор: заведующий отделением А. В. Малинин

СОДЕРЖАНИЕ

1.	ПАСПОРТ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ	4
2.	СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ	6
3.	УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ	11
4.	КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ	
	ДИСЦИПЛИНЫ	13

1. ПАСПОРТ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ «ОП.14 Основы теории авиационных двигателей»

1.1. Область применения программы

Программа учебной дисциплины предназначена для реализации государственных требований к минимуму содержания и уровню подготовки выпускников по специальности 25.02.01 Техническая эксплуатация летательных аппаратов и двигателей.

1.2. Место дисциплины в структуре основной образовательной программы:

Учебная дисциплина «ОП.14 Основы теории авиационных двигателей» является обязательной частью общепрофессионального цикла основной образовательной программы в соответствии с ФГОС СПО по 25.02.01 Техническая эксплуатация летательных аппаратов и двигателей.

1.3 Цели и задачи учебной дисциплины – требования к результатам освоения дисциплины:

В результате освоения дисциплины обучающийся должен уметь:

- применять основы технической термодинамики: первое и второе начала термодинамики, термодинамические процессы, циклы.

В результате освоения дисциплины обучающийся должен знать:

- основные уравнения газовой динамики, истечение газа;
- теорию газотурбинных двигателей летательных аппаратов: схемы устройства и принципы работы;
- процессы, протекающие в элементах турбореактивных двигателей;
- турбореактивные двигатели двухконтурные;
- турбовинтовые двигатели;
- теорию поршневых двигателей летательных аппаратов: схемы устройства и принцип работы.

Выпускник, освоивший образовательную программу, должен обладать следующими общими и профессиональными компетенциями:

- ОК 01. Выбирать способы решения задач профессиональной деятельности применительно к различным контекстам;
- ОК 02. Использовать современные средства поиска, анализа и интерпретации информации и информационные технологии для выполнения задач профессиональной деятельности;
- ОК 03. Планировать и реализовывать собственное профессиональное и личностное развитие, предпринимательскую деятельность в профессиональной сфере, использовать знания по правовой и финансовой грамотности в различных жизненных ситуациях;
- ОК 04. Эффективно взаимодействовать и работать в коллективе и команде;
- ОК 05. Осуществлять устную и письменную коммуникацию на государственном языке Российской Федерации с учетом особенностей социального и культурного контекста;
- ОК 06. Проявлять гражданско-патриотическую позицию, демонстрировать осознанное поведение на основе традиционных российских духовно-нравственных ценностей, в том числе с учетом гармонизации межнациональных и межрелигиозных отношений, применять стандарты антикоррупционного поведения;
- ОК 07. Содействовать сохранению окружающей среды, ресурсосбережению, применять знания об изменении климата, принципы бережливого производства, эффективно действовать в чрезвычайных ситуациях;
- ОК 08. Использовать средства физической культуры для сохранения и укрепления здоровья в процессе профессиональной деятельности и поддержания необходимого

уровня физической подготовленности;

ОК 09. Пользоваться профессиональной документацией на государственном и иностранном языках.

Техническая эксплуатация летательных аппаратов и двигателей:

- ПК 1.1. Поддерживать и сохранять летную годность летательных аппаратов и двигателей в целях обеспечения безопасности полетов на этапе технической эксплуатации.
- ПК 1.2. Выполнять работы по техническому обслуживанию летательных аппаратов и двигателей.
- ПК 1.3. Регулировать параметры и режимы работы авиационной техники, влияющие на безопасность полетов.
- ПК 1.4. Диагностировать техническое состояние авиационной техники в целом, отдельных ее систем и агрегатов различными методами.
- ПК 1.5. Прогнозировать изменения технического состояния и давать рекомендации по дальнейшей эксплуатации авиационной техники, отдельных ее систем и агрегатов.
- ПК 1.6. Соблюдать правила техники безопасности и охраны труда при проведении работ по технической эксплуатации летательных аппаратов и двигателей.

Организация и сопровождение работ по технической эксплуатации летательных аппаратов и двигателей:

- ПК 2.1. Планировать работы по поддержанию летной годности летательных аппаратов различного типа, их двигателей и функциональных систем в целях обеспечения безопасности полетов на этапе технической эксплуатации.
- ПК 2.2. Осуществлять контроль качества выполняемых работ по технической эксплуатации летательных аппаратов и двигателей.
- ПК 2.3. Осуществлять работы по подготовке (обеспечению) авиационно-техническим имуществом, использующимся для проведения технической эксплуатации летательных аппаратов и двигателей, в том числе осуществлять контроль своевременности проведения метрологических поверок контрольно-измерительных приборов, поверок оборудования и средств диагностики.
- ПК 2.4. Вести техническую документацию по технической эксплуатации летательных аппаратов и двигателей.
- ПК 2.5. Обеспечивать соблюдение правил охраны труда при проведении работ по технической эксплуатации летательных аппаратов и двигателей.

1.4. Рекомендуемое количество часов на освоение учебной дисциплины:

максимальной учебной нагрузки обучающегося — 100 часов, в том числе: обязательной аудиторной учебной нагрузки обучающегося — 94 часа; самостоятельной работы обучающегося — 6 часов.

2. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

2.1. Объём учебной дисциплины и виды учебной работы

Вид учебной работы	Объём в часах
Объём образовательной программы учебной дисциплины	100
в т. ч. в форме практической подготовки	30
Теоретическое обучение	64
Практические и лабораторные занятия	30
Самостоятельная работа	6
Промежуточная аттестация (экзамен)	

2.2. Тематический план и содержание учебной дисциплины «Основы теория авиационных двигателей»

Наименование	Содержание учебного материала, лабораторные работы и практические	Объем	Компетенции
разделов и тем занятия, самостоятельная работа обучающихся		часов	
1 2		3	4
Введение	Содержание и задачи курса. Понятие о двигателях и тепловых двигателях.	2	
	Назначение и состав силовой установки. Понятие о движителе. Типы двигателей,		
	применяемые в авиации.		
	хнической термодинамики и газовой динамики	28	
Тема 1.1 Первый	Предмет «Техническая термодинамика». Параметры состояния газа: температура,		
закон термодинамики	давление, массовая плотность (удельный объем). Уравнение состояния идеального		
и термодинамические	газа. Газовая постоянная и ее физический смысл. Теплоёмкость газа. Внутренняя		
процессы.	энергия газа. Первый закон термодинамики. Понятие о термодинамическом	6	
	процессе. Изохорный, изобарный, изотермический, адиабатический и		
	политропический процессы (определение, зависимость между параметрами,		
	графическое изображение и работа).		OK 01, OK 02,
	Лабораторная работа № 1		OK 03, OK 04,
	Определение изменения параметров состояния газа в изотермическом процессе.		OK 09
	Лабораторная работа № 2	4	ПК 1.1, ПК1.2,
	Определение изменения параметров состояния газа в изобарном процессе.		ПК 1.6, ПК 2.2.
Тема 1.2 Второй	Второй закон термодинамики. Понятие о круговом термодинамическом процессе		ПК 2.4
закон	(цикле). Полезная работа цикла. КПД цикла и его анализ. Идеальные циклы ГТД и	2	
термодинамики и	ПД (графическое изображение, КПД цикла и его анализ).		
термодинамические	Практическое занятие № 1		
циклы.	Расчет идеальных циклов ГТД и ПД.	2	
Тема 1.3 Основные	Предмет «Газовая динамика». Сжимаемость газа. Уравнение неразрывности.		OK 01, OK 02,
уравнения газовой	Понятие об энтальпии газа. Уравнение сохранения энергии для		OK 03, OK 04,
динамики.	энергоизолированного потока и в общем виде. Параметры заторможенного потока.	4	OK 09
	Уравнение Бернулли. Уравнение Эйлера. Определение тяги ТРД с помощью		ПК 1.1, ПК1.2,
	уравнения Эйлера.		ПК 1.6, ПК 2.2.
	Лабораторная работа № 3	2	ПК 2.4
	Определение параметров заторможенного потока.		

	Практическое занятие № 2 Применение уравнения сохранения энергии к компрессору, камере сгорания и турбине ГТД.	2	
Тема 1.4 Скорость истечения газа.	Вывод и анализ формулы скорости истечения газа. Максимальная скорость истечения газа. Критическая скорость потока и критические параметры. Критическая степень понижения давления. Условия получения дозвуковой, звуковой и сверхзвуковой скорости. Понятие о реактивных соплах.	4	
D. A. T.	Лабораторная работа № 4 Истечение газа из реактивного сопла	2	
	иационных газотурбинных двигателей	50	
Тема 2.1 Схема устройства и принцип работы газотурбинных	Классификация, устройство и принцип работы реактивных двигателей. Требования, предъявляемые авиационным двигателям. Изменение параметров газа вдоль газовоздушного тракта ТРД. Удельные параметры ТРД (удельная тяга; удельный расход топлива; удельная масса; удельная лобовая тяга).	2	OK 01, OK 02, OK 03, OK 04, OK 09 IIK 1.1, IIK1.2,
двигателей.	Практическое занятие № 3. Определение типов двигателей по их схемам	2	ПК 1.6, ПК 2.2.
Тема 2.2 Процессы, протекающие в элементах турбореактивных двигателей.	Входное устройство: назначение, требования, типы. Основные элементы входного устройства. Работа дозвуковых входных устройств на земле, при дозвуковых и сверхзвуковых скоростях. Особенности устройства и работа сверхзвуковых входных устройств. Скоростная степень повышения давления: определение, формула Компрессоры: назначение, требования, типы. Общие сведения об осевых компрессорах. Устройство и принцип работы дозвуковой ступени компрессора. Назначение и работа ВНА. Особенности устройства и работы сверхзвуковой ступени. Степень повышения давления воздуха в компрессоре. Влияние режима работы и внешних условий на работу компрессора. Основные элементы и принцип работы центробежного компрессора. Адиабатная и действительная работа компрессора, потери в компрессоре, КПД и мощность потребляемая компрессором. Понятие о характеристиках компрессора: определение, изображение, значение. Помпаж компрессора: причины возникновения, физическая сущность, внешние признаки, последствия, влияющие на безопасность полетов. Конструктивные и эксплуатационные меры предупреждения помпажа. Камеры сгорания: назначение, требования, типы, параметры.	22	ОК 01, ОК 02, ОК 03, ОК 04, ОК 09 ПК 1.1, ПК1.2, ПК 1.6, ПК 2.2. ПК 2.4

	Понятие о горении углеводородных топлив. Теоретически необходимое количество воздуха для сгорания 1 кг топлива. Коэффициент избытка воздуха. Организация процесса горение в камере сгорания. Влияние режима работы двигателя и внешних условий на процесс горения. Газовая турбина: назначение, требования, типы. Общие сведения об осевых турбинах. Устройство и принцип работы активной и реактивной ступени турбины. Работа, создаваемая турбиной, потери, КПД, мощность турбины. Многоступенчатые турбины: необходимость применения. Выходные устройства: назначение, требования, типы. Основные элементы выходного устройства. Изменение параметров газа в выходном устройстве с нерегулируемым соплом. Понятие о реверсивном устройстве, шумоглушителе и форсажной камере сгорания.			
	Практическое занятие № 4 Устройство и работа входных устройств, компрессоров ГТД. Практическое занятие № 5 Устройство и работа камер сгорания, турбин и выходных устройств ГТД. Практическое занятие № 6 Определение конструктивных элементов узлов ГТД по их схемам.	6		
Тема 2.3 Характеристики газотурбинных двигателей.	Режим совместной работы турбины и компрессора: равновесие, разгон, торможение. Приемистость двигателя, ее значение для безопасности полетов. Понятие о характеристиках ТРД. Дроссельная, скоростная, высотная характеристики ТРД (определение, изображение, анализ).	4	ОК 01, ОК 02, ОК 03, ОК 04, ОК 09 ПК 1.1, ПК1.2, ПК 1.6, ПК 2.2.	
	Лабораторная работа № 5 Дроссельная характеристика ТРД	2	ПК 2.4	
Тема 2.4 Турбореактивные двухконтурные двигатели.	Определение ТРДД. Отличительные особенности устройства и схемы ТРДД. Параметры ТРДД (тяга, удельная тяга, удельный расход топлива, коэффициент энергообмена между контурами, степень двухконтурности). Особенность характеристик ТРДД в сравнении с ТРД.	4	OK 01, OK 02, OK 03, OK 04, OK 09	
Тема 2.5 Турбовинтовые двигатели.	Определение ТВД. Устройство и схемы ТВД. Параметры ТВД (эквивалентная мощность, удельный эквивалентный расход топлива). Понятие о турбовинтовентиляторном двигателе. Дроссельная, скоростная и высотная характеристики ТВД.	4	— ПК 1.1, ПК1.2, ПК 1.6, ПК 2.2. ПК 2.4	

	Практическое занятие № 7	1	
	Определение конструктивных типов ТВД и ТРДД по их схемам.		
	Практическое занятие № 8	4	
	Изучение узлов и деталей турбореактивных двухконтурных и турбовинтовых		
	двигателей.		
Раздел 3. Теория авт	национных поршневых двигателей	14	
Тема 3.1 Схема	Определение ПД. Классификация ПД. Схемы устройства и назначение основных		
устройства и	элементов ПД. Принцип работы 4-тактного ПД: процессы и такты, составляющие		OTC A1 OTC A2
принцип работы	цикл.	2	OK 01, OK 02,
поршневых		22	OK 03, OK 04, OK 09
двигателей.			ПК 1.1, ПК1.2,
			ПК 1.6, ПК 2.2.
Тема 3.2 Рабочий	Процессы впуска, сжатия, сгорания, расширения (рабочий ход) и выпуска. Понятие о	4	ПК 2.4
процесс поршневых	детонации.		
двигателей.	Практическое занятие № 9	2	
	Изучение узлов и деталей ПД		
Тема 3.3 Мощность	Индикаторная диаграмма. Среднее индикаторное давление, индикаторная работа и		OK 01, OK 02,
и экономичность	мощность.	4	OK 03, OK 04,
поршневых	Эффективная мощность и механический КПД двигателя. Среднее эффективное	7	OK 09
двигателей.	давление и эффективный КПД. Удельный эффективный расход топлива.		ПК 1.1, ПК1.2,
	Лабораторная работа № 6		ПК 1.6, ПК 2.2.
	Определение эффективной мощности и удельного эффективного расхода топлива на	2	ПК 2.4
	балансирном станке		
Самостоятельная работа обучающихся			
Промежуточная аттес	тация (экзамен)		
ВСЕГО		94	

3. УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ

3.1. Требования к материально-техническому обеспечению

Реализация программы учебной дисциплины требует наличия учебного кабинета «Основ теории авиационных двигателей» и лаборатории «Основ теории авиационных двигателей».

Оборудование учебного кабинета:

- макет-разрез газотурбинного двигателя;
- макет-разрез поршневого двигателя;
- стенды продольных разрезов газотурбинных и поршневых двигателей.

Оборудование лаборатории:

рабочие места лаборатории – стенды:

- определение зависимостей между параметрами газа в изобарном процессе;
- определение зависимостей между параметрами газа в изотермном процессе;
- определение параметров заторможенного потока по сечениям сопла;
- течение газа по соплу;
- снятие дроссельной характеристики ТРД;
- замер мощности и расхода топлива в ПД.

Учебно-наглядные пособия:

- комплекты учебно-наглядных пособий по дисциплине:

Плакаты

- комплект схем термодинамических процессов, узлов и деталей газотурбинных и поршневых двигателей, процессов работы узлов двигателей

Технические средства обучения:

- компьютерный класс;
- интерактивная доска;
- презентации.

Программное обеспечение в соответствии с рабочей программой дисииплины

- Microsoft Office Professional Plus 2013 (License: 63756500)

3.2. Информационное обеспечение обучения

Перечень рекомендуемых учебных изданий, интернет ресурсов, дополнительной литературы

Основные источники:

- 1. Котовский В.Н., Комов А.А. Теория авиационных двигателей. Часть 1. М.: МГТУ ГА, 2013.
- 2. Котовский В.Н., Комов А.А. Теория авиационных двигателей. Часть 2. М.: МГТУ ГА, 2013.
- 3. Колос А.Ф. Теория авиационных двигателей. Рекомендации для курсантов. К: КАТК – филиал МГТУ ГА, 2015.
- 4. Коняев Е.А., Немчиков М.Л. Авиационные горюче-смазочные материалы. М.: МГТУ ГА, 2013

Дополнительные источники:

- 1. Ловинский С.И. Теория авиадвигателей, М., Машиностроение, 1982 г. 320с.
- 2. Мадорский Я.Ю., Герасименко В.Ф. и др. Теория авиационных двигателей. Часть I, Основы термодинамики и газовой динамики. М.: Военное издательство, 1969 год.

- 3. Вагин А.Н., Неспела А.Н. и др. Теория авиационных двигателей. Часть II, Теория реактивных двигателей. М.: Военное издательство, 1968 год
- 4. Рыбальчик В.С. и др. Теория авиационных двигателей, М., Воениздат, 1955 гол.

Интернет-ресурсы:

http://www.edu.ru/-Российское образование Федеральный портал http://cnit.ssau.ru/virt_lab/index.htm-Виртуальная лаборатория http://www.svavia.ru/news/index.html-Российская авиация http://www.brazd.ru/-Иллюстрированный каталог

http://www.avia.ru/docs/2/ http://www.airwar.ru/-Большая авиационная энциклопедия

4. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Кирсановский авиационный технический колледж — филиал МГТУ ГА, реализующий подготовку по учебной дисциплине, обеспечивает организацию и проведение промежуточной аттестации и текущего контроля индивидуальных образовательных достижений — демонстрируемых обучающих знаний, умений и навыков. Текущий контроль проводится преподавателем в процессе проведения практических занятий, решения задач.

тестирования, а также выполнения обучающимися индивидуальных заданий по вариантам заданий.

Оценка «отлично» выставляется при следующих условиях:

- даны исчерпывающие и обоснованные ответы на поставленные преподавателем вопросы;
- показано глубокое и творческое овладение материалом, изложенным в основной и дополнительной литературе в процессе занятия;
- высказываемые положения, решения и действия обоснованы с использованием пособий, макетов и приборов, находящихся в учебной аудитории;
- ответы отличаются четкостью и краткостью; мысли и решения излагаются в необходимой логической последовательности;
 - студент проявил активность в процессе занятия.

Оценка «хорошо» выставляется при следующих условиях:

- даны полные, достаточно глубокие и обоснованные ответы на поставленные преподавателем вопросы;
- показаны глубокие знания основной и недостаточное знакомство с дополнительной литературой;
- показано умение обосновывать высказываемые положения с использованием изучаемых пособий, макетов и приборов, находящихся в учебной аудитории;
- ответы в основном были краткими, но в них не всегда выдерживалась логическая последовательность.
 - студент в целом проявил активность в процессе занятия.

Оценка «удовлетворительно» выставляется при следующих условиях:

- даны в основном правильные ответы на поставленные преподавателем вопросы, но без должностной глубины и обоснования;
 - показаны недостаточные знания основной литературы;
 - при ответах недостаточно использовались пособия, макеты и приборы;
- ответы были многословными, мысли излагались недостаточно четко и без должной логической последовательности.
 - студент проявил низкую активность в процессе занятия.

Оценка «**неудовлетворительно**» выставляется в случаях, когда не выполнены условия, позволяющие выставить оценку «удовлетворительно».

Обучение по учебной дисциплине завершается экзаменом, который проводит ведущий преподаватель. На экзамене могут присутствовать представители общественных организаций обучающихся.

Формы и методы промежуточной аттестации и текущего контроля по учебной дисциплине разработаны образовательным учреждением и доводятся до сведения обучающихся.

Для экзамена и текущего контроля образовательными учреждениями создаются фонды оценочных средств (ФОС).

ФОС включают в себя педагогические контрольно- измерительные материалы, предназначенные для определения соответствия (или несоответствия) индивидуальных образовательных достижений основным показателям результатов подготовки (таблицы).

Раздел			
(тема)	Результаты	Основные	Формы и методы
Учебной	(освоенные умения,	показатели	контроля
дисциплины	усвоенные знания)	результатов	•
	,	подготовки	
1	2	3	4
Раздел 1	Умения:	- Определение типа	Фронтальная и
Тема 1.1-1.4	- определять по графикам	термодинамического	индивидуальная
OK 01, OK 02,	типы термодинамических	процесса и цикла;	беседа.
OK 03, OK 04,	процессов и циклов;	- Определение	Самостоятельная
OK 09	- графическим способом	характера изменения	работа.
ПК 1.1, ПК1.2,	определять работу в	скорости, давления и	Устный опрос
ПК 1.6, ПК 2.2.	термодинамических	температуры газа;	Практическое
ПК 2.4	процессах, идеальных и	- Анализ формулы	занятие №1,2.
	действительных циклах;	тяги ГТД;	Лабораторная
	- анализировать характер	- Определение	работа № 1,2,3,4
	изменения скорости,	уровня скорости на	
	температуры и давления	срезе сопла.	
	энергоизолированного	_	
	потока газа при движении		
	его в диффузоре и		
	конфузоре;		
	Знания:	Формулирование и	
	- физические свойства и	анализ зависимостей	
	параметры состояния газа;		
	- законы термодинамики и		
	газовой динамики;		
	- зависимость параметрами		
	состояния идеального газа		
	и работы в		
	термодинамических		
	процессах;		
	- зависимости термического		
	КПД и работы в		
	термодинамических		
	циклах;		
Раздел 2	Умения:	- Определение типа	Фронтальная и
Тема 2.1-2.5	- определять по схемам и	ГТД, его узлов и	индивидуальная
OK 01, OK 02,	разрезным макетам тип	деталей;	беседа.
OK 03, OK 04,	ГТД, его основные узлы и	- Анализ	Самостоятельная
OK 09	детали, типы узлов;	дроссельной,	работа.
ПК 1.1, ПК1.2, ПК 1.6, ПК 2.2.	- анализировать характер	скоростной и	Устный опрос
ПК 1.6, ПК 2.2. ПК 2.4	изменения основных	высотной	Практическое
1111 4,7	параметров ГТД при	характеристик	занятие №3,4,5,6,7,8
	изменении частоты		Лабораторная
	вращения, скорости и		работа № 5
	высоты полета;		
	Знания:	- Классификация	
:	- типы двигателей ЛА;	двигателей;	
	- удельные параметры ТРД;	- Формулирование	

	- назначение, требования, типы узлов и деталей ГТД; - принцип работы узлов ГТД; - определение, причины возникновения и меры борьбы с помпажем; - преимущества, недостатки и область применения ГТД.	зависимостей и их численное значение; - Определение узла (детали), перечисление требований, типов ГТД; - Анализ процессов, протекающих в	
Тема 3.1-3.3 ОК 01, ОК 02, ОК 03, ОК 04, ОК 09 ПК 1.1, ПК1.2, ПК 1.6, ПК 2.2. ПК 2.4	- определять по схемам и разрезным макетам тип ПД, его основные узлы и детали, типы узлов Знания: - назначение, типы узлов и деталей ПД; - принцип работы узлов ПД, основные понятия рабочего цикла, процессы и такты; - диаграмма газораспределения, индикаторная диаграмма, работа, мощность и экономичность.	ПД, его узлов и деталей. - Определение узла, его состав и типы; - Анализ процессов, протекающих в элементах ГТД; - Анализ диаграмм, формулирование и анализ мощности и экономичности.	индивидуальная беседа. Самостоятельная работа. Устный опрос Практическое занятие №9 Лабораторная работа № 6

Заместитель директора Кирсановского АТК-филиала МГТУ ГА по учебно-методической работе

Зав. отделением

______/ А.В. Малинин /

Преподаватель Кирсановского АТКфилиала МГТУ ГА

_______/ О. А. Светлаков /

Программа обсуждена и одобрена методическим совещанием цикловой комиссии Т, К и ТОДЛА

Протокол № $\underline{12}$ от « $\underline{10}$ » \underline{cuores} 2025 г. Председатель цикловой комиссии T, K и TОДЛА Кирсановского ATK – филиала $M\Gamma TY$ ΓA